Community Conversation => Transsexual talk => Post operative life => Topic started by: paulault55 on June 11, 2011, 10:12:31 AM Return to Full Version
Title: Granulation Tissue
Post by: paulault55 on June 11, 2011, 10:12:31 AM
Post by: paulault55 on June 11, 2011, 10:12:31 AM
I am 33 days post op with Dr. Mcginn, since returning home i have been sending her pictures of my progress every 2 days, i received an email from her this morning saying i have quite a bit of granulation tissue, i have my 6 week followup next week and she says she will go over the area with silver nitrate, my question, is it common to have granulation tissue buildup.
Paula
Paula
Title: Re: Granulation Tissue
Post by: Kristyn on June 11, 2011, 11:26:12 AM
Post by: Kristyn on June 11, 2011, 11:26:12 AM
I'm almost nine months and still have an area of granulation just below the urethra. My doctors philosophy is, as long as the tissue is healthy, i.e. white in color and not black or grey, then it's best to let it run its course. The area is healing, albeit slowly, but healing none the less. So, yes, granulation tissue is common with any surgery or injury, it is a sign that the body is doing it's job and healing.
Title: Re: Granulation Tissue
Post by: Plain Jane on June 11, 2011, 12:36:00 PM
Post by: Plain Jane on June 11, 2011, 12:36:00 PM
I had granulation tissue for quite a while after wards, in my case within my vagina. He went over it with silver nitrate several times, and after two years decided to go in and remove the spot surgically. It was a one-day affair, really not a big deal, and it took care of the problem. Not sure how much that happens, but generally I would concur: yes, it is quite common.
Title: Re: Granulation Tissue
Post by: girl_ashley on June 12, 2011, 02:04:59 AM
Post by: girl_ashley on June 12, 2011, 02:04:59 AM
Yes, it is quite common enough. Nothing to worry about. Just don't let your new lips heal to each other and you'll be fine.
Title: Re: Granulation Tissue
Post by: Re: Joyce on June 12, 2011, 08:58:26 AM
Post by: Re: Joyce on June 12, 2011, 08:58:26 AM
Quote from: girl_ashley on June 12, 2011, 02:04:59 AM
Yes, it is quite common enough. Nothing to worry about. Just don't let your new lips heal to each other and you'll be fine.
On my first followup visit with Dr. McGinn, she showed me that that was what was happening to me. She showed me that I should pull them apart routinely to help them heal properly (the way she designed them to be). I'd never thought about this, but it makes perfect sense after thinking about it.
I got quite the education in anatomy on that trip. Now, I can see why this would greatly interfere with simple things, like urination.
Mine had begun to grow together and she simply spread them back out. I do this daily now and will for a while.
This is just another reason to select a surgeon who will not only give you great aftercare the first few weeks, but also see you periodically for the first year or so, until everything is finally healed and done. Not knowing how it should look and heal up, I wouldn't have known there was a problem and it might have become one.
I had a fair amount of granulation tissue and she showed me what it was and where it was. It was hard for me to see, but I guess that's why I'm not a Doctor... :laugh:
She treated me with Silver Nitrate sticks and I'll be seeing my local Gyno for a few more treatments to get through this part.
Title: Re: Granulation Tissue
Post by: Debra on June 13, 2011, 04:43:14 PM
Post by: Debra on June 13, 2011, 04:43:14 PM
I've talked to other girls and it does seem to be quite common.
I had a bad bleeding complication which led to more swelling which led to stitches coming out too fast which led to LOTS and LOTS of granulation tissue.
Because of this, I've had 4 silver nitrate treatments and am having another on Wed. It probably won't be my last. The good news is most of what's left is inside the vagina now, the rest on the outside has healed up thanks to the treatments.
I had a bad bleeding complication which led to more swelling which led to stitches coming out too fast which led to LOTS and LOTS of granulation tissue.
Because of this, I've had 4 silver nitrate treatments and am having another on Wed. It probably won't be my last. The good news is most of what's left is inside the vagina now, the rest on the outside has healed up thanks to the treatments.
Title: Re: Granulation Tissue
Post by: Muffins on June 16, 2011, 12:27:36 AM
Post by: Muffins on June 16, 2011, 12:27:36 AM
what does granulation on the inside feel like? Is it like a strong burning sensation as the stent rubs past it? I have that around 3-4 inches in on the left wall.... I'm hoping it's not as I want it to go away asap!
Title: Re: Granulation Tissue
Post by: paulault55 on June 22, 2011, 12:35:41 PM
Post by: paulault55 on June 22, 2011, 12:35:41 PM
An update about my granulation, Dr. Mcginn said i looked much better in person than in the pictures i had sent her, there is no granulation inside the neo vagina and she was very pleased at how the skin graft looked, the outside she went over with silver nitrate sticks which turned everything gray, within a day the slothing off began and some bleeding, i called Dr. Mcginn and she told me it was normal, she also said if i find someone locally to do silver nitrate sessions weekly for a few weeks i do not need to come back to see her till my 6 month check up, yesterday the dr that did my facial and genital laser removal called me back and she said she was comfortable doing these treatments, she will talk to Dr. Mcginn to see what area needs to be treated.
Paula
Paula
Title: Microflora of the penile skin-lined neovagina of transsexual women
Post by: Amazon D on June 22, 2011, 01:03:15 PM
Post by: Amazon D on June 22, 2011, 01:03:15 PM
Microflora of the penile skin-lined neovagina of transsexual women
http://www.biomedcentral.com/1471-2180/9/102 (http://www.biomedcentral.com/1471-2180/9/102)
Background
The microflora of the penile skin-lined neovagina in male-to-female transsexuals is a recently created microbial niche which thus far has been characterized only to a very limited extent. Yet the knowledge of this microflora can be considered as essential to the follow-up of transsexual women. The primary objective of this study was to map the neo-vaginal microflora in a group of 50 transsexual women for whom a neovagina was constructed by means of the inverted penile skin flap technique. Secondary objectives were to describe possible correlations of this microflora with multiple patients' characteristics, such as sexual orientation, the incidence of vaginal irritation and malodorous vaginal discharge.
Results
Based on Gram stain the majority of smears revealed a mixed microflora that had some similarity with bacterial vaginosis (BV) microflora and that contained various amounts of cocci, polymorphous Gram-negative and Gram-positive rods, often with fusiform and comma-shaped rods, and sometimes even with spirochetes. Candida cells were not seen in any of the smears.
On average 8.6 species were cultured per woman. The species most often found were: Staphylococcus epidermidis, Streptococcus anginosus group spp., Enterococcus faecalis, Corynebacterium sp., Mobiluncus curtisii and Bacteroides ureolyticus. Lactobacilli were found in only one of 30 women
There was no correlation between dilatation habits, having coitus, rinsing habits and malodorous vaginal discharge on the one hand and the presence of a particular species on the other. There was however a highly significant correlation between the presence of E. faecalis on the one hand and sexual orientation and coitus on the other (p = 0.003 and p = 0.027 respectively).
Respectively 82%, 58% and 30% of the samples showed an amplicon after amplification with M. curtisii, Atopobium vaginae and Gardnerella vaginalis primer sets.
Conclusion
Our study is the first to describe the microflora of the penile skin-lined neovagina of transsexual women. It reveals a mixed microflora of aerobe and anaerobe species usually found either on the skin, in the intestinal microflora or in a BV microflora.
Background
Gender identity disorder (GID) is a condition in which a person identifies as belonging to the opposite gender as the one he or she was birthed to and whereby this person feels significant discomfort about this condition. Transsexualism is considered as the most extreme form of gender identity disorder [1] and will most typically require sex reassignment surgery (SRS) following the Standards of Care of the World Professional Association of Transgender Health (WPATH), formerly known as the 'Harry Benjamin Gender Dysphoria Association' (HBIGDA) [2]. In male-to-female transsexual patients, also called 'transsexual women', this SRS consists of removal of the male reproductive organs (testes and penis), creation of a neovagina (vaginoplasty) and -clitoris and, in most patients, implantation of breast prostheses. Since the start of the gender team at our institution (Ghent University Hospital) we performed SRS in more than 400 male-to-female transsexual individuals. For the creation of the neovagina in transsexual women we use the technique of the inverted penile skin flap to line a newly created space between the prostate-bladder and the rectum. This technique is nowadays the standard technique for creation of the vagina in transsexual patients [3].
Under normal conditions, the lower female genital tract harbors a commensal microflora that primarily consists of lactobacilli which confer antimicrobial protection to the vagina. In addition, under adequate vaginal estrogen levels, the vaginal epithelium and its associated mucous layers help to regulate and support the intrinsic bacterial and mucosal defense system [4]. However, in case the vaginal hydrogen peroxide producing lactobacilli fail to sustain, an overgrowth by other bacteria occurs, as is most typically observed with commensal bacterial vaginosis-associated micro-organisms [5]. These commensals include Gardnerella vaginalis, Atopobium vaginae, Prevotella spp., anaerobic Gram-positive cocci, Mobiluncus spp. and Mycoplasma hominis.
While the composition of the normal vaginal microflora (VMF) has been extensively studied by conventional culture techniques and molecular methods [6,7], thus far, there is no information in the literature on the vaginal microflora in transsexual women treated with the technique of the inverted penile skin flap. The single report on the microflora of the neo-vagina concerned 15 patients who were treated with pedicled intestinal (sigmoid) transplants [8].
Yet, knowledge of the VMF in transsexual women can be considered as essential to ensure proper follow-up of the women, e.g. in case they present with vulvar or vaginal complaints (pain, odour, itch, etc) or in case of overt genital inflammation and/or infection.
The primary objective of this study was to map the VMF in a group of transsexual patients treated with the inverted penile skin technique. Secondary objectives were to describe possible correlations of this microflora with multiple patients' characteristics, such as sexual orientation, the incidence of vaginal irritation and malodorous vaginal discharge.
Results
General characteristics
The mean age of the transsexual women who participated in the study was 43.1 years (SD = 10.4) and the mean time elapsed since sex reassignment surgery – herewith denoted by vaginoplasty – was 6.3 years (SD = 6.4).
The vast majority of participants were taking oestrogen replacement therapy (47/50), with three women not taking any oestrogens since they were at increased thrombo-embolic risk. In addition to daily oestrogen substitution two women also administered continuously antiandrogens (cyproterone acetate 10 mg daily).
Hormonal status
Median serum levels for testosterone (ng/dl) and oestradiol (pg/ml) were 29.57 (interquartile (IQ) range 21.45–38.24) and 49.13 (IQ range 28.61–96.17) respectively.
Sexual and genital characteristics
About half of the transsexual women (54%) were involved in a steady relationship at the time of the survey. Forty-four percent of the transsexual women indicated heterosexual orientation (n = 22), 22% reported homosexual preference (n = 11), 28% had a bisexual orientation (n = 14) and the remainder of women (n = 3) identified themselves as 'not sexually interested' (6%).
Eleven women (22%) had regular episodes of vaginal irritation while nine (18%) frequently experienced dysuria. There was a significant correlation between having episodes of vaginal irritation and dysuria (0.505, p < 0.001). Thirty-four out of the 50 patients answered the additional questions about the use of vaginal products and presence of bad smelling discharge. Nineteen out of these 34 women (55.9%) reported regular use of vaginal hygiene products. Ten of them were using a iodine solution (Isobetadine Gynecological solution, Meda Pharma, Brussels, Belgium), 7 used a solution with low pH containing lactic acid and milk serum (different manufacturers), one was using a body douche gel and another applied plain tap water.
Eight out of 34 (23.5%) had frequent episodes of bad-smelling vaginal discharge. There was no correlation between malodorous vaginal discharge and vaginal irritation. Likewise there was no correlation between vaginal rinsing habits and the vaginal pH and malodorous vaginal discharge.
Vaginal examination and microflora
A normal sized speculum (2.5 cm wide) could be used in 74% of women (37/50), whereas the smaller type (2.0 cm wide) had to be used in the remainder of women. Only in one patient insertion of a speculum was impossible due to almost complete obliteration of the vagina. Although this was not a study criterion and therefore not scored, a foul smell of the vagina was observed in most patients.
The mean vaginal pH was 5.88 (SD = 0.49, range 5.0–7.0). There was no correlation between the vaginal pH and complaints of irritation, dysuria or malodorous discharge.
Gram stain
The fifty neovaginal swab specimens were Gram stained. For six smears, one with numerous white blood cells, few bacteria were found. Forty-four smears revealed mixed microflora that had some similarity with bacterial vaginosis microflora and that contained various amounts of cocci, polymorphous Gram-negative and Gram-positive rods, often with fusiform and comma-shaped rods, and sometimes even with spirochetes (Figure 1). In five of these smears white blood cells were seen. Candida cells were not seen in any of the smears. There was no correlation between malodorous vaginal discharge and painful dilation on one hand and the presence of leucocytes on Gram stain on the other hand.
Figure 1. Microscopic image (1000×) of Gram-stained neovaginal smears illustrating the observed diversity: various amounts of cocci (A), polymorphous Gram negative and Gram positive rods, often with fusiform (B) and comma-shaped rods (C), and sometimes even with spirochetes (D).
Identification of cultured isolates from 30 transsexual women by tDNA-PCR and 16S rRNA gene sequencing
Of the 582 isolates that were picked after culture of the 30 neovaginal specimens on 5 different media, a total of 378 isolates could be identified by tDNA-PCR. A further 56 isolates could be identified after sequencing of the 16S rRNA gene. 79 different species and 12 possibly novel species (referred to as TSW Genotype A to L) were identified (Table 1). TSW Genotype B, I and K had more than 98% similarity to previously cultured isolates. All other genotypes had between 83% and 99% similarity with previously cloned sequences (Table 1).
Table 1. Detailed composition of the neovaginal microflora of 30 swab samples, as determined by culture and tDNA-PCR based identification.
We identified on average 8.6 species per woman (range 4–14). The species most often found were Bacteroides ureolyticus (n = 10 women), Corynebacterium sp. (n = 12), Enterococcus faecalis (n = 13), Mobiluncus curtisii (n = 10), Staphylococcus epidermidis (n = 19) and Streptococcus anginosus group spp. (n = 16). The neovaginal microflora of only one woman contained lactobacilli. Neisseria gonorrhoeae could not be not cultured.
There was no correlation between dilatation habits, having coitus, rinsing habits and malodorous vaginal discharge on the one hand and the presence of a particular species on the other hand. There was however a highly significant correlation between the presence of E. faecalis and sexual orientation: in heterosexual transsexual women (having a male partner) E. faecalis was present in 78.6% while it was only present in 14.2% of homosexual transsexual women and in 12.5% of bisexual transsexual women (p = 0.003). Equally there was a significant correlation between E. faecalis and the occurrence of regular coitus with a male partner: in those having regular coitus E. faecalis was present in 75% while in only 25% of those not having coitus (p = 0.027).
Detection by species specific PCR
DNA extracts of the 50 neovaginal samples were amplified with 16S rRNA gene based primers specific for A. vaginae, G. vaginalis and Mobiluncus curtisii. Respectively 58% and 30% of the samples were PCR positive for A. vaginae and G. vaginalis (Table 2), with 24% of the samples positive for both species and 36% negative for both species.
Table 2. Amplification results with A. vaginae and G. vaginalis specific primers obtained for 50 neovaginal samples.
The samples that were PCR positive for G. vaginalis were selected for amplification with bacterial vaginosis associated bacteria (BVAB) primers. All 15 specimens were PCR negative for BVAB1 and BVAB3 and only one specimen, positive for both A. vaginae and G. vaginalis, was PCR positive for BVAB2.
Remarkably, 41 of 50 neovaginal specimens showed an amplicon after amplification with M. curtisii primers (Table 3). Of these, 36 (88%) could be confirmed using Mobiluncus genus specific primers.
Table 3. Detection of Mobiluncus curtisii in 30 neovaginal samples: comparison between Gram stain, culture and species specific primers.
After amplification of the neovaginal DNA extracts with primers that target the ITS2-region of the rRNA cistron of Fungi and size determination of the amplified ITS2 by means of capillary electrophoresis, 6 specimens revealed an amplicon. Three specimens could not be sequenced and the remaining three sequences were identified as molds (resp. Davidiella tassiana, Lycoperdon perlatum and Phaeosphaeria sp.).
The PCR assay for Chlamydia on urine was negative for all participants.
Discussion
The pH of the neovagina of the transsexual women in our study was consistently elevated (mean 5.8; range 5.0–7.0) as compared to that of the biological vagina. This is not unexpected as the acidic pH (3.8–4.5) of the vagina results primarily from lactic acid production by the resident lactobacilli [9,10] and is further enhanced through acidification by an active proton pump action of the vaginal epithelium – a mechanism upregulated by oestrogen [11]. In our patient series however, lactobacilli were consistently lacking, with only one transsexual woman with a penile skin-lined neovagina displaying some lactobacilli. As expected, and although these women show serum oestradiol levels comparable to those in substituted postmenopausal women, the environment of this penile skin-lined neovagina, does not support the growth of lactobacilli. This might be due to the absence of glycogen rich epithelial cells and to the absence of lactobacillus epithelial binding sites that are upregulated by oestrogen in the normal vaginal mucosa.
Our study indicates that the microflora of the neovagina is characterized by bacterial species from the skin and the intestinal microflora, somewhat similar to what is observed with premenarchal girls, who also lack a Lactobacillus dominated microflora, eliciting colonisation resistance. In particular, microscopy of Gram-stained neovaginal smears revealed a mixed microflora that was even more complex and denser than the one observed in biological women with bacterial vaginosis: we found mostly filamentous and fusiform shaped cells as well as Mobiluncus and Spirochaetes cell types. After culture on five different media a complex mixture of aerobe and (facultative) anaerobe species was found, with species usually found either on the skin and in the intestine or in the vagina of women with bacterial vaginosis.
Identification of the cultured isolates, by means of tDNA-PCR showed that the most abundant species of the neovaginal bacterial community included on the one hand species from the typical skin microflora, such as S. epidermidis and S. anginosus group spp., though not S. aureus which is usually prevalent on the perineal and vulvar skin, and on the other hand some typical intestinal species, such as E. faecalis, M. curtisii and B. ureolyticus. Interestingly, the latter three are also often present at low numbers in the vagina, with E. faecalis being associated with urinary tract infection and M. curtisii and B. ureolyticus being common to bacterial vaginosis.
It was recently suggested that the more complex the ecosystem changes are, as demonstrated by the presence of Mobiluncus and other anaerobes, the more difficult it is to cure bacterial vaginosis [12]. Therefore, the presence of Mobiluncus, known to have a high prevalence of resistance against metronidazole, indicates that additional treatment with clindamycin or amoxicillin might be useful in the case of a metronidazole resistant neovaginal infection in transsexual women [13,14].
Enterococcus faecalis was significantly and strongly associated with heterosexual orientation and penetrative sexual contact, indicating that the migration of this uropathogen to the vagina is strongly enhanced by intercourse, an observation that has previously been made for E. coli and Enterococcus species [15]. This finding is of importance to transsexual women's health as vaginal colonisation with uropathogens is generally known to precede urinary tract infection, while the neovagina presumably does not offer the colonisation resistance to such opportunistic pathogens observed among biological women with a lactobacilli-dominated microflora. This may explain at least in part why one in five transsexual women reported the frequent occurrence of dysuria.
At present it remains elusive to what extent other genito-urinary symptoms and complaints – both being rather common in our survey – among transsexual women can be attributed to microbiological factors. Frequent episodes of malodorous discharge were reported by one in four women and malodour was even more frequently observed upon gynaecological examination, which in turn might relate to the presence of faecal bacterial vaginosis-like microflora.
It should be acknowledged however that most of the cell types present in the Gram-stained smears could not be cultured by standard techniques. Hence, similar to other complex bacterial communities and the intestinal microflora [16] and the bacterial vaginosis microflora [6,7] in particular, much of the bacterial diversity of the neovaginal microflora – consisting of 8.6 cultivable species on average – remains uncharacterized through culture techniques. Still, using culture, twelve possibly novel species, designated TSW Genotypes A to L, were detected.
Specific assays were applied to detect fungal species in the neovagina, as well as to assess the presence of the index species in bacterial vaginosis. While Candida albicans was not seen on Gram stain, six women were found to harbour some fungal species, of which three remain unidentified. No firm conclusions can be drawn on the virtual absence of Candida albicans, however it may be acknowledged that in biological women Candida species are frequently encountered on the vaginal mucosa and that their colonisation of the vagina is stimulated by estradiol.
It is interesting to notice that the neovagina is colonized by largely the same intestinal species as the vagina in the absence of lactobacilli (some two thirds of transsexual women (64.0%) having evidence of colonisation with G. vaginalis, A. vaginae, or both, and over 80% of transsexual women harbouring M. curtisii) and thus that the same type of colonisation occurs, regardless the type of epithelium, vaginal mucosa of skin.
The BVAB species 1 to 3, belonging to the phylum Clostridiales, and BVAB2 in particular, were found to be highly specific for BV in biological women [17,18]. These were however not found in the neovaginal specimens, although it must be noted that the incidence of these species in the vaginal microflora of female patients of our hospital was quite low as well (unpublished data).
It is difficult to establish to what extent a bacterial vaginosis-like condition is present among these transsexual women. In a recent case report, a transsexual woman was diagnosed with bacterial vaginosis based on a Hay-Ison score of 2 (intermediate microflora) [19], although microscopy revealed numerous white blood cells and spirochaete-like organisms consistent with our observations. As a matter of fact, based on the criterion of a departure from a normal lactobacilli-dominated microflora, all patients in our study would qualify as having bacterial vaginosis-like microflora. We failed to document any association between specific bacteria and vaginal complaints – except for the unexplained and possibly spurious correlation between the presence of Mobiluncus and pain during sexual activity. It should be noted that also among biological women vaginitis symptoms are rarely associated with a single micro-organism.
The clinical significance of the very complex microflora of the penile-skin lined neovagina remains to be determined to a significant extent, which also means that we have few explanations for the high rates of vaginal complaints such as vaginal irritation and discharge in these patients. Furthermore, no proper advice can be given at present with regard to optimal vaginal hygiene in transsexual women, although douching with plain warm water has been suggested as an effective means to maintain the hygiene of the neovagina in transsexual women [20], but studies on this issue are actually lacking.
Conclusion
This study is the first to describe the microflora of the penile skin-lined neovagina of transsexual women. The neovaginal microflora were devoided of lactobacilli and consisted of a mixed microflora of aerobe and anaerobe species usually found either on the skin, in the intestine or in bacterial vaginosis. Through tDNA-PCR we showed that the most abundant species of the neovaginal bacterial community included S. epidermidis, S. anginosus group spp., E. faecalis, M. curtisii and B. ureolyticus. Twelve possibly novel species, designated TSW Genotypes A to L, were detected. By using species specific PCR, we further established a particularly high prevalence of A. vaginae, G. vaginalis and M. curtisii. The clinical significance of the very complex microflora of the penile-skin lined neovagina remains to be determined however, and hence, at present we have few explanations for the high rates of vaginal complaints such as vaginal irritation and discharge in these patients. No proper advice can be given at present with regard to optimal vaginal hygiene in transsexual women.
PS: I had mine 14 yrs ago and i haven't douched or dilated in over 6 yrs maybe more with no problems but i am also a celibate
but there are studies showing a higher incidence of catching a STD disease with a neovagina so keep it protected
http://www.biomedcentral.com/1471-2180/9/102 (http://www.biomedcentral.com/1471-2180/9/102)
Background
The microflora of the penile skin-lined neovagina in male-to-female transsexuals is a recently created microbial niche which thus far has been characterized only to a very limited extent. Yet the knowledge of this microflora can be considered as essential to the follow-up of transsexual women. The primary objective of this study was to map the neo-vaginal microflora in a group of 50 transsexual women for whom a neovagina was constructed by means of the inverted penile skin flap technique. Secondary objectives were to describe possible correlations of this microflora with multiple patients' characteristics, such as sexual orientation, the incidence of vaginal irritation and malodorous vaginal discharge.
Results
Based on Gram stain the majority of smears revealed a mixed microflora that had some similarity with bacterial vaginosis (BV) microflora and that contained various amounts of cocci, polymorphous Gram-negative and Gram-positive rods, often with fusiform and comma-shaped rods, and sometimes even with spirochetes. Candida cells were not seen in any of the smears.
On average 8.6 species were cultured per woman. The species most often found were: Staphylococcus epidermidis, Streptococcus anginosus group spp., Enterococcus faecalis, Corynebacterium sp., Mobiluncus curtisii and Bacteroides ureolyticus. Lactobacilli were found in only one of 30 women
There was no correlation between dilatation habits, having coitus, rinsing habits and malodorous vaginal discharge on the one hand and the presence of a particular species on the other. There was however a highly significant correlation between the presence of E. faecalis on the one hand and sexual orientation and coitus on the other (p = 0.003 and p = 0.027 respectively).
Respectively 82%, 58% and 30% of the samples showed an amplicon after amplification with M. curtisii, Atopobium vaginae and Gardnerella vaginalis primer sets.
Conclusion
Our study is the first to describe the microflora of the penile skin-lined neovagina of transsexual women. It reveals a mixed microflora of aerobe and anaerobe species usually found either on the skin, in the intestinal microflora or in a BV microflora.
Background
Gender identity disorder (GID) is a condition in which a person identifies as belonging to the opposite gender as the one he or she was birthed to and whereby this person feels significant discomfort about this condition. Transsexualism is considered as the most extreme form of gender identity disorder [1] and will most typically require sex reassignment surgery (SRS) following the Standards of Care of the World Professional Association of Transgender Health (WPATH), formerly known as the 'Harry Benjamin Gender Dysphoria Association' (HBIGDA) [2]. In male-to-female transsexual patients, also called 'transsexual women', this SRS consists of removal of the male reproductive organs (testes and penis), creation of a neovagina (vaginoplasty) and -clitoris and, in most patients, implantation of breast prostheses. Since the start of the gender team at our institution (Ghent University Hospital) we performed SRS in more than 400 male-to-female transsexual individuals. For the creation of the neovagina in transsexual women we use the technique of the inverted penile skin flap to line a newly created space between the prostate-bladder and the rectum. This technique is nowadays the standard technique for creation of the vagina in transsexual patients [3].
Under normal conditions, the lower female genital tract harbors a commensal microflora that primarily consists of lactobacilli which confer antimicrobial protection to the vagina. In addition, under adequate vaginal estrogen levels, the vaginal epithelium and its associated mucous layers help to regulate and support the intrinsic bacterial and mucosal defense system [4]. However, in case the vaginal hydrogen peroxide producing lactobacilli fail to sustain, an overgrowth by other bacteria occurs, as is most typically observed with commensal bacterial vaginosis-associated micro-organisms [5]. These commensals include Gardnerella vaginalis, Atopobium vaginae, Prevotella spp., anaerobic Gram-positive cocci, Mobiluncus spp. and Mycoplasma hominis.
While the composition of the normal vaginal microflora (VMF) has been extensively studied by conventional culture techniques and molecular methods [6,7], thus far, there is no information in the literature on the vaginal microflora in transsexual women treated with the technique of the inverted penile skin flap. The single report on the microflora of the neo-vagina concerned 15 patients who were treated with pedicled intestinal (sigmoid) transplants [8].
Yet, knowledge of the VMF in transsexual women can be considered as essential to ensure proper follow-up of the women, e.g. in case they present with vulvar or vaginal complaints (pain, odour, itch, etc) or in case of overt genital inflammation and/or infection.
The primary objective of this study was to map the VMF in a group of transsexual patients treated with the inverted penile skin technique. Secondary objectives were to describe possible correlations of this microflora with multiple patients' characteristics, such as sexual orientation, the incidence of vaginal irritation and malodorous vaginal discharge.
Results
General characteristics
The mean age of the transsexual women who participated in the study was 43.1 years (SD = 10.4) and the mean time elapsed since sex reassignment surgery – herewith denoted by vaginoplasty – was 6.3 years (SD = 6.4).
The vast majority of participants were taking oestrogen replacement therapy (47/50), with three women not taking any oestrogens since they were at increased thrombo-embolic risk. In addition to daily oestrogen substitution two women also administered continuously antiandrogens (cyproterone acetate 10 mg daily).
Hormonal status
Median serum levels for testosterone (ng/dl) and oestradiol (pg/ml) were 29.57 (interquartile (IQ) range 21.45–38.24) and 49.13 (IQ range 28.61–96.17) respectively.
Sexual and genital characteristics
About half of the transsexual women (54%) were involved in a steady relationship at the time of the survey. Forty-four percent of the transsexual women indicated heterosexual orientation (n = 22), 22% reported homosexual preference (n = 11), 28% had a bisexual orientation (n = 14) and the remainder of women (n = 3) identified themselves as 'not sexually interested' (6%).
Eleven women (22%) had regular episodes of vaginal irritation while nine (18%) frequently experienced dysuria. There was a significant correlation between having episodes of vaginal irritation and dysuria (0.505, p < 0.001). Thirty-four out of the 50 patients answered the additional questions about the use of vaginal products and presence of bad smelling discharge. Nineteen out of these 34 women (55.9%) reported regular use of vaginal hygiene products. Ten of them were using a iodine solution (Isobetadine Gynecological solution, Meda Pharma, Brussels, Belgium), 7 used a solution with low pH containing lactic acid and milk serum (different manufacturers), one was using a body douche gel and another applied plain tap water.
Eight out of 34 (23.5%) had frequent episodes of bad-smelling vaginal discharge. There was no correlation between malodorous vaginal discharge and vaginal irritation. Likewise there was no correlation between vaginal rinsing habits and the vaginal pH and malodorous vaginal discharge.
Vaginal examination and microflora
A normal sized speculum (2.5 cm wide) could be used in 74% of women (37/50), whereas the smaller type (2.0 cm wide) had to be used in the remainder of women. Only in one patient insertion of a speculum was impossible due to almost complete obliteration of the vagina. Although this was not a study criterion and therefore not scored, a foul smell of the vagina was observed in most patients.
The mean vaginal pH was 5.88 (SD = 0.49, range 5.0–7.0). There was no correlation between the vaginal pH and complaints of irritation, dysuria or malodorous discharge.
Gram stain
The fifty neovaginal swab specimens were Gram stained. For six smears, one with numerous white blood cells, few bacteria were found. Forty-four smears revealed mixed microflora that had some similarity with bacterial vaginosis microflora and that contained various amounts of cocci, polymorphous Gram-negative and Gram-positive rods, often with fusiform and comma-shaped rods, and sometimes even with spirochetes (Figure 1). In five of these smears white blood cells were seen. Candida cells were not seen in any of the smears. There was no correlation between malodorous vaginal discharge and painful dilation on one hand and the presence of leucocytes on Gram stain on the other hand.
Figure 1. Microscopic image (1000×) of Gram-stained neovaginal smears illustrating the observed diversity: various amounts of cocci (A), polymorphous Gram negative and Gram positive rods, often with fusiform (B) and comma-shaped rods (C), and sometimes even with spirochetes (D).
Identification of cultured isolates from 30 transsexual women by tDNA-PCR and 16S rRNA gene sequencing
Of the 582 isolates that were picked after culture of the 30 neovaginal specimens on 5 different media, a total of 378 isolates could be identified by tDNA-PCR. A further 56 isolates could be identified after sequencing of the 16S rRNA gene. 79 different species and 12 possibly novel species (referred to as TSW Genotype A to L) were identified (Table 1). TSW Genotype B, I and K had more than 98% similarity to previously cultured isolates. All other genotypes had between 83% and 99% similarity with previously cloned sequences (Table 1).
Table 1. Detailed composition of the neovaginal microflora of 30 swab samples, as determined by culture and tDNA-PCR based identification.
We identified on average 8.6 species per woman (range 4–14). The species most often found were Bacteroides ureolyticus (n = 10 women), Corynebacterium sp. (n = 12), Enterococcus faecalis (n = 13), Mobiluncus curtisii (n = 10), Staphylococcus epidermidis (n = 19) and Streptococcus anginosus group spp. (n = 16). The neovaginal microflora of only one woman contained lactobacilli. Neisseria gonorrhoeae could not be not cultured.
There was no correlation between dilatation habits, having coitus, rinsing habits and malodorous vaginal discharge on the one hand and the presence of a particular species on the other hand. There was however a highly significant correlation between the presence of E. faecalis and sexual orientation: in heterosexual transsexual women (having a male partner) E. faecalis was present in 78.6% while it was only present in 14.2% of homosexual transsexual women and in 12.5% of bisexual transsexual women (p = 0.003). Equally there was a significant correlation between E. faecalis and the occurrence of regular coitus with a male partner: in those having regular coitus E. faecalis was present in 75% while in only 25% of those not having coitus (p = 0.027).
Detection by species specific PCR
DNA extracts of the 50 neovaginal samples were amplified with 16S rRNA gene based primers specific for A. vaginae, G. vaginalis and Mobiluncus curtisii. Respectively 58% and 30% of the samples were PCR positive for A. vaginae and G. vaginalis (Table 2), with 24% of the samples positive for both species and 36% negative for both species.
Table 2. Amplification results with A. vaginae and G. vaginalis specific primers obtained for 50 neovaginal samples.
The samples that were PCR positive for G. vaginalis were selected for amplification with bacterial vaginosis associated bacteria (BVAB) primers. All 15 specimens were PCR negative for BVAB1 and BVAB3 and only one specimen, positive for both A. vaginae and G. vaginalis, was PCR positive for BVAB2.
Remarkably, 41 of 50 neovaginal specimens showed an amplicon after amplification with M. curtisii primers (Table 3). Of these, 36 (88%) could be confirmed using Mobiluncus genus specific primers.
Table 3. Detection of Mobiluncus curtisii in 30 neovaginal samples: comparison between Gram stain, culture and species specific primers.
After amplification of the neovaginal DNA extracts with primers that target the ITS2-region of the rRNA cistron of Fungi and size determination of the amplified ITS2 by means of capillary electrophoresis, 6 specimens revealed an amplicon. Three specimens could not be sequenced and the remaining three sequences were identified as molds (resp. Davidiella tassiana, Lycoperdon perlatum and Phaeosphaeria sp.).
The PCR assay for Chlamydia on urine was negative for all participants.
Discussion
The pH of the neovagina of the transsexual women in our study was consistently elevated (mean 5.8; range 5.0–7.0) as compared to that of the biological vagina. This is not unexpected as the acidic pH (3.8–4.5) of the vagina results primarily from lactic acid production by the resident lactobacilli [9,10] and is further enhanced through acidification by an active proton pump action of the vaginal epithelium – a mechanism upregulated by oestrogen [11]. In our patient series however, lactobacilli were consistently lacking, with only one transsexual woman with a penile skin-lined neovagina displaying some lactobacilli. As expected, and although these women show serum oestradiol levels comparable to those in substituted postmenopausal women, the environment of this penile skin-lined neovagina, does not support the growth of lactobacilli. This might be due to the absence of glycogen rich epithelial cells and to the absence of lactobacillus epithelial binding sites that are upregulated by oestrogen in the normal vaginal mucosa.
Our study indicates that the microflora of the neovagina is characterized by bacterial species from the skin and the intestinal microflora, somewhat similar to what is observed with premenarchal girls, who also lack a Lactobacillus dominated microflora, eliciting colonisation resistance. In particular, microscopy of Gram-stained neovaginal smears revealed a mixed microflora that was even more complex and denser than the one observed in biological women with bacterial vaginosis: we found mostly filamentous and fusiform shaped cells as well as Mobiluncus and Spirochaetes cell types. After culture on five different media a complex mixture of aerobe and (facultative) anaerobe species was found, with species usually found either on the skin and in the intestine or in the vagina of women with bacterial vaginosis.
Identification of the cultured isolates, by means of tDNA-PCR showed that the most abundant species of the neovaginal bacterial community included on the one hand species from the typical skin microflora, such as S. epidermidis and S. anginosus group spp., though not S. aureus which is usually prevalent on the perineal and vulvar skin, and on the other hand some typical intestinal species, such as E. faecalis, M. curtisii and B. ureolyticus. Interestingly, the latter three are also often present at low numbers in the vagina, with E. faecalis being associated with urinary tract infection and M. curtisii and B. ureolyticus being common to bacterial vaginosis.
It was recently suggested that the more complex the ecosystem changes are, as demonstrated by the presence of Mobiluncus and other anaerobes, the more difficult it is to cure bacterial vaginosis [12]. Therefore, the presence of Mobiluncus, known to have a high prevalence of resistance against metronidazole, indicates that additional treatment with clindamycin or amoxicillin might be useful in the case of a metronidazole resistant neovaginal infection in transsexual women [13,14].
Enterococcus faecalis was significantly and strongly associated with heterosexual orientation and penetrative sexual contact, indicating that the migration of this uropathogen to the vagina is strongly enhanced by intercourse, an observation that has previously been made for E. coli and Enterococcus species [15]. This finding is of importance to transsexual women's health as vaginal colonisation with uropathogens is generally known to precede urinary tract infection, while the neovagina presumably does not offer the colonisation resistance to such opportunistic pathogens observed among biological women with a lactobacilli-dominated microflora. This may explain at least in part why one in five transsexual women reported the frequent occurrence of dysuria.
At present it remains elusive to what extent other genito-urinary symptoms and complaints – both being rather common in our survey – among transsexual women can be attributed to microbiological factors. Frequent episodes of malodorous discharge were reported by one in four women and malodour was even more frequently observed upon gynaecological examination, which in turn might relate to the presence of faecal bacterial vaginosis-like microflora.
It should be acknowledged however that most of the cell types present in the Gram-stained smears could not be cultured by standard techniques. Hence, similar to other complex bacterial communities and the intestinal microflora [16] and the bacterial vaginosis microflora [6,7] in particular, much of the bacterial diversity of the neovaginal microflora – consisting of 8.6 cultivable species on average – remains uncharacterized through culture techniques. Still, using culture, twelve possibly novel species, designated TSW Genotypes A to L, were detected.
Specific assays were applied to detect fungal species in the neovagina, as well as to assess the presence of the index species in bacterial vaginosis. While Candida albicans was not seen on Gram stain, six women were found to harbour some fungal species, of which three remain unidentified. No firm conclusions can be drawn on the virtual absence of Candida albicans, however it may be acknowledged that in biological women Candida species are frequently encountered on the vaginal mucosa and that their colonisation of the vagina is stimulated by estradiol.
It is interesting to notice that the neovagina is colonized by largely the same intestinal species as the vagina in the absence of lactobacilli (some two thirds of transsexual women (64.0%) having evidence of colonisation with G. vaginalis, A. vaginae, or both, and over 80% of transsexual women harbouring M. curtisii) and thus that the same type of colonisation occurs, regardless the type of epithelium, vaginal mucosa of skin.
The BVAB species 1 to 3, belonging to the phylum Clostridiales, and BVAB2 in particular, were found to be highly specific for BV in biological women [17,18]. These were however not found in the neovaginal specimens, although it must be noted that the incidence of these species in the vaginal microflora of female patients of our hospital was quite low as well (unpublished data).
It is difficult to establish to what extent a bacterial vaginosis-like condition is present among these transsexual women. In a recent case report, a transsexual woman was diagnosed with bacterial vaginosis based on a Hay-Ison score of 2 (intermediate microflora) [19], although microscopy revealed numerous white blood cells and spirochaete-like organisms consistent with our observations. As a matter of fact, based on the criterion of a departure from a normal lactobacilli-dominated microflora, all patients in our study would qualify as having bacterial vaginosis-like microflora. We failed to document any association between specific bacteria and vaginal complaints – except for the unexplained and possibly spurious correlation between the presence of Mobiluncus and pain during sexual activity. It should be noted that also among biological women vaginitis symptoms are rarely associated with a single micro-organism.
The clinical significance of the very complex microflora of the penile-skin lined neovagina remains to be determined to a significant extent, which also means that we have few explanations for the high rates of vaginal complaints such as vaginal irritation and discharge in these patients. Furthermore, no proper advice can be given at present with regard to optimal vaginal hygiene in transsexual women, although douching with plain warm water has been suggested as an effective means to maintain the hygiene of the neovagina in transsexual women [20], but studies on this issue are actually lacking.
Conclusion
This study is the first to describe the microflora of the penile skin-lined neovagina of transsexual women. The neovaginal microflora were devoided of lactobacilli and consisted of a mixed microflora of aerobe and anaerobe species usually found either on the skin, in the intestine or in bacterial vaginosis. Through tDNA-PCR we showed that the most abundant species of the neovaginal bacterial community included S. epidermidis, S. anginosus group spp., E. faecalis, M. curtisii and B. ureolyticus. Twelve possibly novel species, designated TSW Genotypes A to L, were detected. By using species specific PCR, we further established a particularly high prevalence of A. vaginae, G. vaginalis and M. curtisii. The clinical significance of the very complex microflora of the penile-skin lined neovagina remains to be determined however, and hence, at present we have few explanations for the high rates of vaginal complaints such as vaginal irritation and discharge in these patients. No proper advice can be given at present with regard to optimal vaginal hygiene in transsexual women.
PS: I had mine 14 yrs ago and i haven't douched or dilated in over 6 yrs maybe more with no problems but i am also a celibate
but there are studies showing a higher incidence of catching a STD disease with a neovagina so keep it protected